

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF HEALTH SCIENCES

	QUALIFICATIONS: BACHELOR OF ENVIRONMENTAL HEALTH SCIENCES, BACHELOR OF SCIENCE IN HEALTH INFORMATION SYSTEMS MANAGEMENT, BACHELOR OF HUMAN NUTRITION									
QUALIFICATIO 08BOHN	N CODE: 08BOHS, 07BHIS,	LEVEL: 7								
COURSE CODE	E: EPD711S	COURSE NAME: EPIDEMIOLOGY 3								
SESSION:	SESSION: JULY 2022		THEORY							
DURATION:	3 HOURS	MARKS:	100							

SUPPLEME	NTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER(S)	DR LARAI AKU-AKAI
MODERATOR:	DR ROSWITHA MAHALIE

INSTRUCTIONS									
	1.	Answer ALL the questions.							
	2.	Write clearly and neatly in the spaces provided.							

PERMISSIBLE MATERIALS

- 1. Scientific calculator
- 2. Statistical tables (attached)

THIS QUESTION PAPER CONSISTS OF 9 PAGES (Including this front page)

Select the most appropriate answer from the options provided. 1.1 In a randomised controlled trial, which of the following best describes the primary reason to randomise patients to treatments? a) To create two treatment groups that are similar at baseline on both known and unknown factors associated with the expected outcome b) Prevent bias introduced when the patients know what type of treatment they are receiving c) Prevent bias introduced when the investigators know what type of treatment the patients are receiving d) None of the above (1)1.2 A researcher restricts selection of cases and controls to those with at least 70 percent of their lifetime years with a known source of drinking water. This approach was used to reduce which type of bias? a) Confounding bias b) Selection bias c) Information bias d) Random error (1)1.3 Cluster sampling can be used when: a) The sampling frame is known b) Selecting participants for Focus group discussions c) Selecting participants who are hidden in the population d) A large population has homogenous units (1)1.4 Consent by proxy: a) Exempts the researcher from getting individual consent b) Means that the researcher gets consent from an institutional research review committee

(20 marks)

(1)

Question 1

c) Applies to research involving people with diminished autonomy

d) Involves research with pregnant women

1.5	Sel	f-governance is the driving force behind which ethical principle?	
	b) c)	Autonomy Beneficence Justice	
	d)	Respect for persons	(1)
1.6	Co	mmunal consent:	
	a)	Exempts the researcher from getting individual consent	
	b)	Means that the researcher gets consent from an institutional research review committee	
	c)	Applies to research involving people with diminished autonomy	
	d)	Means that the researcher gets consent from a community/institutional gatekeeper	(1)
1.7	Joh	nn Snow made numerous contributions in health including all the following,	
	exc	cept:	
	a)	Developing the spot map	
	b)	Administration of anaesthesia during labour for the first time	
	c)	Developing the cholera vaccine	
	d)	Controlling the cholera outbreak in London	(1)
1.8	The	e following are characteristics of the Chi-square distribution, except:	
	a)	Symmetrical about the mean	
	b)	Completely specified by the degree of freedom	
	c)	Does not have negative values	
	d)	Used for qualitative data	(1)
1.9	The	e following is true about longitudinal studies except:	
	a)	They are likened to a film as cross-sectional studies are liked to a snap-shot	
	b)	They are useful in studying trends of events	
	c)	They are useful in studying rare outcomes	
	d)	They involve repeated observation over a prolonged period	(1)

- 1.10 Controls were selected as a random sample using the population register of a certain County Council. Which of the following best describes the primary purpose of using a random sample in this study?
 - a) Maximize generalizability by obtaining a statistically representative sample.
 - b) Select a control group that was as similar as possible to those in the population.
 - c) Provide an estimate of the exposure in the population from which the cases arose.
 - d) Select a control group with habits similar to those in the population of cases. (1)

Indicate the scales of measurement for each of the following variables:

1.11	Ethnicity	(2)
1.12	Number of days of illness	(2)
1.13	Height in centimetres	(2)
1.14	Students' year of study	(2)
1.15	Marital status	(2)

Question 2 (20 marks)

Explain the following terms used in health research: (Each correct answer earns 2 marks)

- 2.1 Critical limit
- 2.2 Level of significance
- 2.3 Null hypothesis
- 2.4 Sampling error
- 2.5 Statistical power
- 2.6 Confounding
- 2.7 Type 1 error
- 2.8 Berksonian bias
- 2.9 Non-probability sampling
- 2.10 Sampling frame

Question 3 (20 marks)

Identify the suitable study design in the scenarios provided below, highlighting characteristics identified:

- 3.1 A study was carried out to establish a relationship between exposure to radiation and breast cancer. The study group comprised of 104 persons who had been exposed to radiation while 158 persons who were not exposed to radiation were used for comparison. The study subjects were followed up over 25 years after which data was collected on their development of breast cancer. (4)
- 3.2 A researcher wants to quantify the magnitude of Schistosomiasis in a village located close to a river having freshwater snails. Urine samples were collected from 30% of the community members to examine for Schistosoma and community members were asked the presence of urinary symptoms and their source of water for domestic purposes. (4)
- 3.3 Researchers conducted a study to assess a possible association between eating fish and heart disease. Study subjects with heart disease were recruited into one group and people without heart disease were recruited into another group for comparison. Both groups were asked about their consumption of fish. (4)
- 3.4 After consuming a meal with his family, a five year old boy begins to have severe abdominal pains. He is not known to have any food allergies. Samples of the meal consumed were analysed and it was found to contain a certain heavy metal. A detailed report regarding the event and all laboratory tests was compiled. (4)
- 3.5 In order to plan for Flu vaccines in Namibia, the Ministry undertake a study in which they demonstrate trends in the prevalence of Flu over the last 5 years. (4)

Question 4 (20 marks)
4.1 Outline the characteristics of the z-distribution. (5)
4.2 Explain why it is important to pre-test study instruments. (4)
4.3 Discuss any two (2) non-probability sampling methods. (6)
4.4 Discuss the characteristics of any data collection method. (5)

Question 5 (20 marks)

5.1 Calculate the sample size for a study on effectiveness of environmental measures to control schistosomiasis in a community with 800 households, where the prevalence of malaria is 28%, if the study is conducted at 95% confidence interval. (5)

- 5.2 What would be the most appropriate sampling method to be used in selecting the sample from the above community if the population is homogenous, all the houses are numbered and a list of all the household heads is available? Describe how this sampling method will be applied. (5)
- 5.3 It is claimed that in a particular population, the mean amount of money a person has on him is cash is \$50, with a standard deviation of \$8. To test this claim, a researcher is taking a sample of 26 persons from the population, and he finds that they have a mean of \$52. Is the amount of cash people have on them more than \$50?

Good luck!!!

Z table

	Z table										
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359	
.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753	
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141	
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517	
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879	
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224	
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549	
.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852	
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133	
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389	
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621	
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830	
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015	
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177	
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319	
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441	
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545	
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633	
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706	
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767	
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817	
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857	
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890	
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916	
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936	
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952	
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964	
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974	
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981	
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986	
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990	
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993	
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995	
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997	
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998	

	*		
•	Ta	-	
	10	1.3	
•	2 44	-	

cum. prob	t.50	t.75	t.80	t .85	t_96	t.95	t .975	t.99	t 905	t.200	t ,9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df		-10.000	and an extension	Pro Market			70 M. Anna D.				
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1,943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2,365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1,880	2.306	2.898	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1,833	2,262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.784	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1,363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.748	2,120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1,740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3,527	3.819
22	0.000	0.688	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.080	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1,315	1.708	2.058	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1,703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1,313	1.701	2.048	2.487	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.899	2.045	2.462	2.756	3.396	3,659
30	0.000	0.683	0.854	1.055	1.310	1,697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3,460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.648	1.962	2.330	2.581	3.098	3.300
Z	0.000	0.674	0.842	1.036	1.282	1.645	1,960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
					Confid	dence Le	evel				

Chi-square Distribution

df\area	.995	.990	.975	.950	.900	.750	.500	.250	.100	.050	.025	.010	.005
1	0.00004	0.00016	0.00098	0.00393	0.01579	0.10153	0.45494	1.32330	2.70554	3.84146	5.02389	6.63490	7.87944
2	0.01003	0.02010	0.05064	0.10259	0.21072	0.57536	1.38629	2.77259	4.60517	5.99146	7.37776	9.21034	10.59663
3	0.07172	0.11483	0.21580	0.35185	0.58437	1.21253	2.36597	4.10834	6.25139	7.81473	9.34840	11.34487	12.83816
4	0.20699	0.29711	0.48442	0.71072	1.06362	1.92256	3.35669	5.38527	7.77944	9.48773	11.14329	13.27670	14.86026
5	0.41174	0.55430	0.83121	1.14548	1.61031	2.67460	4.35146	6.62568	9.23636	11.07050	12.83250	15.08627	16.74960
6	0.67573	0.87209	1.23734	1.63538	2.20413	3.45460	5.34812	7.84080	10.64464	12.59159	14.44938	16.81189	18.54758
7	0.98926	1.23904	1.68987	2.16735	2.83311	4.25485	6.34581	9.03715	12.01704	14.06714	16.01276	18.47531	20.27774
8	1.34441	1.64650	2.17973	2.73264	3.48954	5.07064	7.34412	10.21885	13.36157	15.50731	17.53455	20.09024	21.95495
9	1.73493	2.08790	2.70039	3.32511	4.16816	5.89883	8.34283	11.38875	14.68366	16.91898	19.02277	21.66599	23.58935
10	2.15586	2.55821	3.24697	3.94030	4.86518	6.73720	9.34182	12.54886	15.98718	18.30704	20.48318	23.20925	25.18818
11	2.60322	3.05348	3.81575	4.57481	5.57778	7.58414	10.34100	13.70069	17.27501	19.67514	21.92005	24.72497	26.75685
12	3.07382	3.57057	4.40379	5.22603	6.30380	8.43842	11.34032	14.84540	18.54935	21.02607	23.33666	26.21697	28.29952
13	3.56503	4.10692	5.00875	5.89186	7.04150	9.29907	12.33976	15.98391	19.81193	22.36203	24.73560	27.68825	29.81947
14	4.07467	4.66043	5.62873	6.57063	7.78953	10.16531	13.33927	17.11693	21.06414	23.68479	26.11895	29.14124	31.31935
15	4.60092	5.22935	6.26214	7.26094	8.54676	11.03654	14.33886	18.24509	22.30713	24.99579	27.48839	30.57791	32.80132
16	5.14221	5.81221	6.90766	7.96165	9.31224	11.91222	15.33850	19.36886	23.54183	26.29623	28.84535	31.99993	34.26719
17	5.69722	6.40776	7.56419	8.67176	10.08519	12.79193	16.33818	20.48868	24.76904	27.58711	30.19101	33.40866	35.71847
18	6.26480	7.01491	8.23075	9.39046	10.86494	13.67529	17.33790	21.60489	25.98942	28.86930	31.52638	34.80531	37.15645
19	6.84397	7.63273	8.90652	10.11701	11.65091	14.56200	18.33765	22.71781	27.20357	30.14353	32.85233	36.19087	38.58226
20	7.43384	8.26040	9.59078	10.85081	12.44261	15.45177	19.33743	23.82769	28.41198	31.41043	34.16961	37.56623	39.99685
21	8.03365	8.89720	10.28290	11.59131	13.23960	16.34438	20.33723	24.93478	29.61509	32.67057	35.47888	38.93217	41.40106
22	8.64272	9.54249	10.98232	12.33801	14.04149	17.23962	21.33704	26.03927	30.81328	33.92444	36.78071	40.28936	42.79565
23	9.26042	10.19572	11.68855	13.09051	14.84796	18.13730	22.33688	27.14134	32.00690	35.17246	38.07563	41.63840	44.18128
24	9.88623	10.85636	12.40115	13.84843	15.65868	19.03725	23.33673	28.24115	33.19624	36.41503	39.36408	42.97982	45.55851
25	10.51965	11.52398	13.11972	14.61141	16.47341	19.93934	24.33659	29.33885	34.38159	37.65248	40.64647	44.31410	46.92789
26	11.16024	12.19815	13.84390	15.37916	17.29188	20.84343	25.33646	30.43457	35.56317	38.88514	41.92317	45.64168	48.28988
27	11.80759	12.87850	14.57338	16.15140	18.11390	21.74940	26.33634	31.52841	36.74122	40.11327	43.19451	46.96294	49.64492
28	12.46134	13.56471	15.30786	16.92788	18.93924	22.65716	27.33623	32.62049	37.91592	41.33714	44.46079	48.27824	50.99338
29	13.12115	14.25645	16.04707	17.70837	19.76774	23.56659	28.33613	33.71091	39.08747	42.55697	45.72229	49.58788	52.33562
30	13.78672	14.95346	16.79077	18.49266	20.59923	24.47761	29.33603	34.79974	40.25602	43.77297	46.97924	50.89218	53.67196